
Benchmarking tools for verification of
constant-time execution
WTICG – X Workshop de Trabalhos de Iniciação Científica e de Graduação

Arthur Costa Lopes, Diego F. Aranha
6 de novembro de 2017

Instituto de Computação/Unicamp



Introduction

1



Introduction

Definition
The Internet of Things (IoT) is a scenario in which objects, animals
or people are provided with unique identifiers and the ability to
automatically transfer data over a network without requiring
human-to-human or human-to-computer interaction.

Many applications:

• Smart cities (lighting, waste management, environment, traffic)
• Incident response (access control, detection of fire or radiation)
• Retail (supply chain control, logistics)
• Home automation (intrusion detection, smart spaces).

Important: Devices need to be small and pervasive, thus
resource-constrained and limited tamper-resistance.

2



Motivation

Cryptography can mitigate security issues in embedded devices.

Security property Technique Primitive
Protecting data at rest FS-level encryption Block cipher
Protecting data in transit Secure channel Auth stream cipher
Secure software updates Code signing Digital signatures
Secure booting Integrity/Authentication Hash functions, MACs
Secure debugging Entity authentication Challenge-response
Device id/auth Auth protocol PKC
Key distribution Key exchange PKC

Several algorithms needed to implement primitives:

• Block and stream ciphers
• Hash functions
• Message Authentication Codes (MACs)
• Elliptic Curve Cryptography 3



Side-channel attacks

Computation leaks information correlated with data:

• Execution time and cache timing
• Power consumption and acoustic emanation
• Fault injection

Challenge
Algorithms and implementations need to be made regular, adding
non-trivial performance penalty!

4



Side-channel attacks

Timing attacks
If execution time information correlates with secret bits, timing
information can help an attacker to discover the secret.

Example: Hash-based password authentication.
EXTERN_C int __cdecl memcmp(const void *Ptr1,

const void *Ptr2, size_t Count) {
INT v = 0;
BYTE *p1 = (BYTE *)Ptr1;
BYTE *p2 = (BYTE *)Ptr2;

while(Count-- > 0 && v == 0) {
v = *(p1++) - *(p2++);

}
return v;

}

Defense: Constant-time execution.
5



Timing attacks and countermeasures

int util_cmp_const(const void *in, const void *pw,
const size_t size) {

const unsigned char *_a = (const unsigned char *) in;
const unsigned char *_b = (const unsigned char *) pw;
unsigned char result = 0;
size_t i;

for (i = 0; i < size; i++) {
result |= _a[i] ^ _b[i];

}

return result; /* returns 0 if equal, nonzero otherwise */
}

Important: Use analysis tool to verify constant-time behavior!

6



Contributions

• Performance evaluation of constant-time verification tools.

• New representation format for constraint specification.

• Improvements in FlowTracker to parse new representation.

• Benchmarking database available at
https://github.com/arthurlopes/ctbench.

7

https://github.com/arthurlopes/ctbench


Analysis tools

1. Static analysis (compile time):
• Verifies source code, compiled binary or intermediate
representation.

• Cannot detect if instructions or external library functions are
variable time.

• Examples: FlowTracker, ct-verif.

2. Dynamic analysis (execution time):
• Verifies code during actual execution in target platform.
• Cannot process all possible inputs and detect corner cases.
• Examples: dudect, ctgrind.

8



Static analysis

1. FlowTracker:
• Creates an information flow graph from LLVM intermediate
representation.

• Checks if there is information flow from secret inputs to branches
or memory accesses.

• Limited to availability of source code (not external libraries).

2. ct-verif :
• Requires source code to be annotated.
• Converts LLVM intermediate representation to Boogie program.
• Extracts provable statements about constant-time execution.

9



Dynamic analysis

1. dudect:
• Executed the code a few times to sample execution time.
• Performs statistical tests over the samples.
• Cannot explore the full input size and might miss corner cases.

2. ctgrind:
• Plug-in of the Valgrind memory debugger.
• Marks secret information as not initialized.
• Triggers memory safety issue when secret information is used in
branches or array indexes.

• Patch was ported to latest release (3.13).

10



Comparison among tools

Tool name Type Limitations Advantages
ct-verif Static Preliminary and

under develop-
ment.

Provides formal
guarantees at
high-level.

FlowTracker Static Cannot check all
dependencies au-
tomatically or de-
tect microarchitec-
ture effects.

High efficiency and
full coverage th-
rough information
flow analysis.

dudect Dynamic Cannot prove im-
plementation is
constant time or
test all inputs.

Usability and de-
tection of microar-
chitecture effects.

ctgrind Dynamic Cannot prove im-
plementation is
constant time or
test all inputs.

Usability (easy to
set up and run).

Tabela 1: Comparison of different tools for analyzing constant-time behavior.

11



New representation

We developed an interoperable new representation for specifying
secret inputs based on FlowTracker XML annotations.

Listing 1: XML file used to annotate code in Listing 1.
<functions>

<sources>

<function>
<name>util_cmp_const</name> <!--Function to be analyzed-->
<return>false</return> <!--Return value is not critical-->
<public>

<parameter>in</parameter> <!--Input String -->
<parameter>size</parameter> <!--String length-->

</public>
<secret>

<parameter>pw</parameter> <!--Password-->
</secret>

</function>

</sources>
</functions> 12



CTBench: a new benchmarking database

Library Algorithm
Type

Constant Variant

BearSSL

Symmetric 18 4
MAC 1 2
Hash 3 5
RSA 3 4
ECC 0 4

dudect
examples

AES 1 1
ECC 1 1

Others 1 1

NaCl

Authenticated
encryption

6 0

Hash 4 0
Curve25519 1 0

Tabela 2: List of 60 algorithms in our benchmarking database, containing
implementations from the BearSSL and NaCl cryptographic libraries and
examples from the dudect dynamic analysis tool.

13



Experimental results

1. Obtain information to establish ground truth.
2. Start by running FlowTracker for all implementations.
3. Verify dudect results against FlowTracker.
4. Verify ctgrind results against FlowTracker.

Collected observations:

• Dynamic analysis tools performed as expected and detected
variable-time code.

• There was a mismatch with FlowTracker due to memcmp function.

14



Conclusions and future work

Static and dynamic analysis tools can indeed help the software
development process to detect timing side-channels.

Both approaches are needed for full coverage of program behavior.
Annotations are an important assumption and must be done right.

For future work, we plan to extend the CTBench database with more
implementations and improve usability to better assist the
developer (i.e. integrate into development workflow and generate
warning when external source code is not available).

15



Questions?
D. F. Aranha

dfaranha@ic.unicamp.br
@dfaranha

15


