

DEPARTMENT OF COMPUTER SCIENCE UNIVERSIDADE FEDERAL DE MINAS GERAIS FEDERAL UNIVERSITY OF MINAS GERAIS, BRAZIL

Avaliação de assinaturas baseadas em hash para a Internet das Coisas

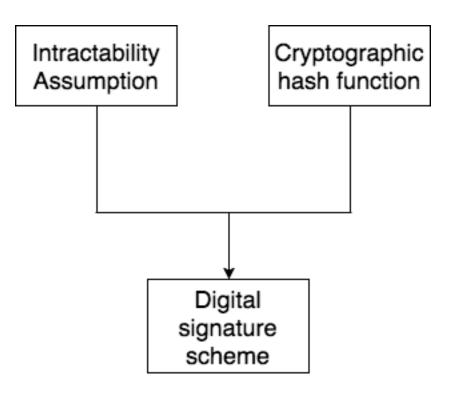
Jéssica C. Carneiro, Leonardo B. Oliveira

Problems



- Lack of cryptosystems suitable for IoT
 - Performance issues
 - Key size
 - Signature size
- Quantum computers
 - "(...) it was estimated there was a one in seven chance that by 2026 a quantum computer will be built that can break RSA-2048 encryption." (<u>itworldcanada.com</u>)
- Need to consider new digital signature schemes

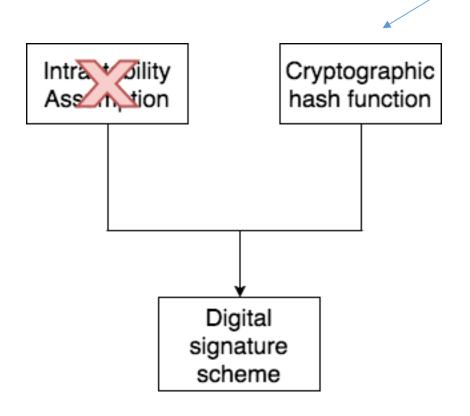
Our goal



- Implement and evaluate Hash-based signatures (HBS) schemes over a resource-constrained IoT device
- Present a didactic approach to HBS
- Related work about HBS and other post-quantum cryptosystems for IoT

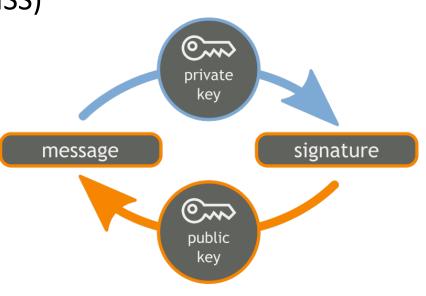
Agenda

- Introduction
- Background
- Implementation
- Evaluation
- Conclusion


Background – HBS

Background – HBS

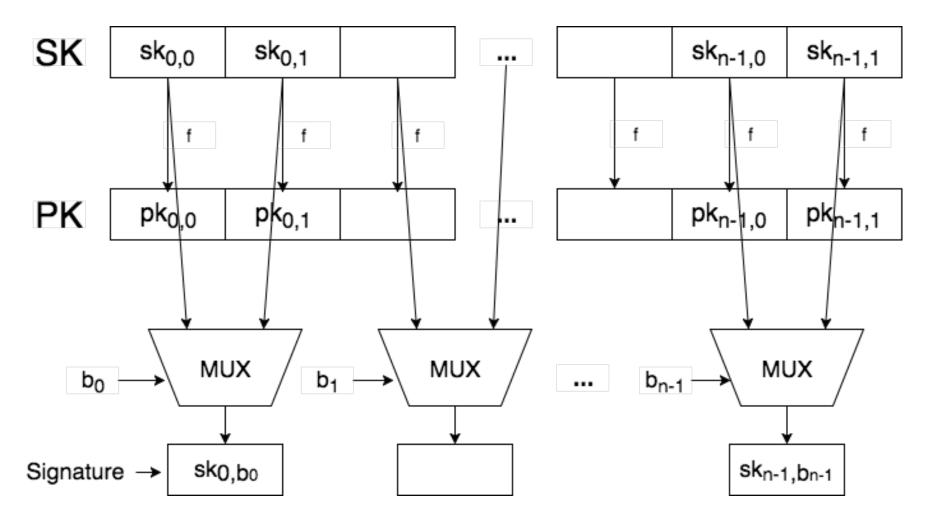
Security relies only on the hash function chosen


 $\mathbf{U} \mathbf{F} \mathbf{M} \mathbf{G} = \mathbf{6}$

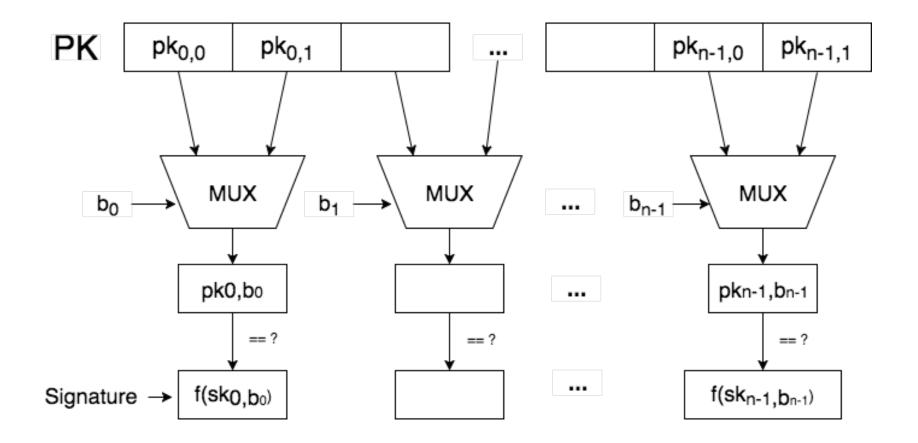
Background – HBS (cont.)

- Created by Ralph Merkle (1989)
- Used only for signing (not encrypting data)
- Limited number of signatures
- Any cryptographic hash function can be used (flexible)
- Implementation is (in general) simple
- Fast (only PRNG and hash functions)

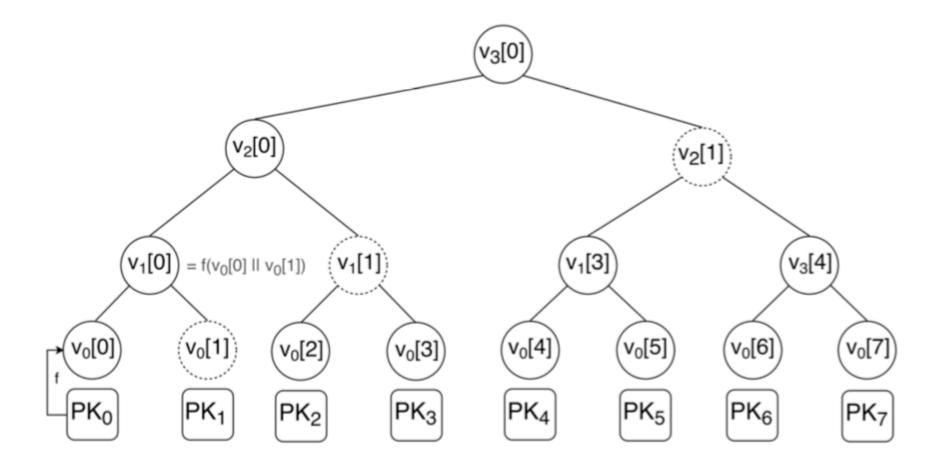
Background – HBS (cont.)


- One-Time Signatures (OTS)
 - Lamport-Diffie, Winternitz
- Multi-Time Signatures (MTS)
 - Merkle Signature Scheme (MSS)
 - Built on top of many OTS

Background – Notation


- f: cryptographic hash function chosen
- n: output size of hash function f in bits
- SK: signing or private key
- PK: public or verification key

Background – Lamport-Diffie



UF*M***G** 10

Background – Lamport-Diffie (cont.)

Background – Merkle Signature Scheme

Agenda

- Introduction
- Background
- Implementation
- Evaluation
- Conclusion

Implementation

- Arduino platform
- RELIC toolkit (<u>https://github.com/relic-toolkit/relic</u>)
- MSS + Winternitz (OTS)
 - Winternitz: smaller keys/signatures than Lamport-Diffie
 - Sign many bits simultaneously
 - Trade-off: time x size (parameter w)

Implementation

```
void hash_msg(uint8_t out[MD_LEN], uint8_t *msg, size_t size)
1
2
   #if MD MAP == SHONE
3
     md_map_shone(out,msg,size);
4
   #elif MD_MAP == SH224
5
     md_map_sh224(out,msg,size);
6
   #elif MD MAP == SH256
7
     md map sh256(out,msg,size);
8
   #elif MD_MAP == SH384
9
     md_map_sh384 (out,msg,size);
10
   #elif MD MAP == SH512
11
     md_map_sh512(out,msg,size);
12
   #endif
13
14
```


Agenda

- Introduction
- Background
- Implementation
- Evaluation
- Conclusion

Evaluation – Analytical

n	w	Key/ Signature size (bytes)	Evaluations of f
256	2	4256	399
	4	2144	1005
	8	1088	8670
	16	576	1179630
512	2	16768	786
	4	8384	1965
	8	4224	16830
	16	2176	2228190

Table 1 - Winternitz: trade-off key/signature size x processing

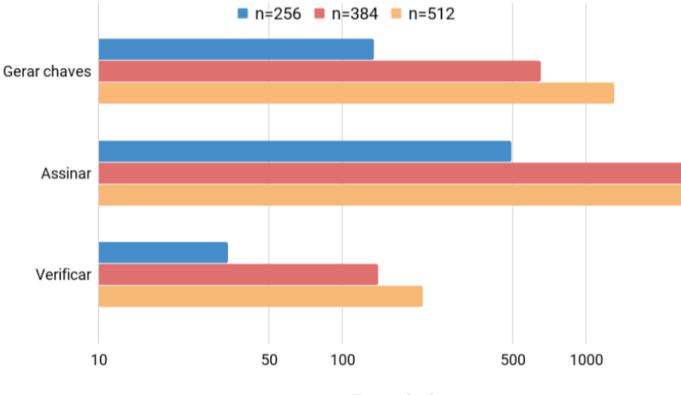
Evaluation – Analytical (cont.)

h	n	Key size	Signature size	Number of
		(bytes)	(bytes)	signatures
14	256	2144	2,592	
	384	4752	5,424	16,384
	512	8384	9,280	
16	256	2,144	2,656	
	384	4752	5,520	65,536
	512	8384	9,408	
18	256	2,144	2,720	
	384	4752	5,616	262,144
	512	8384	9,536	

Table 2 – MSS + Winternitz: Sizes and number of signatures (w = 4)

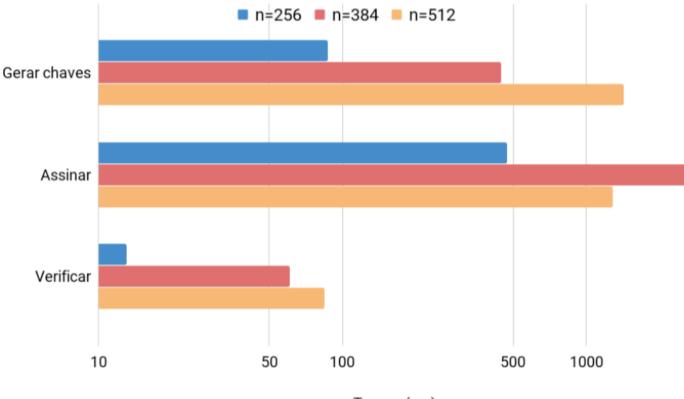
Evaluation – Security level

- Classical computer:
 - Same as hash function (SHA2-256 = 128 bits)
- Quantum computer:
 - Current security / 2 (SHA2-256 = 64 bits)

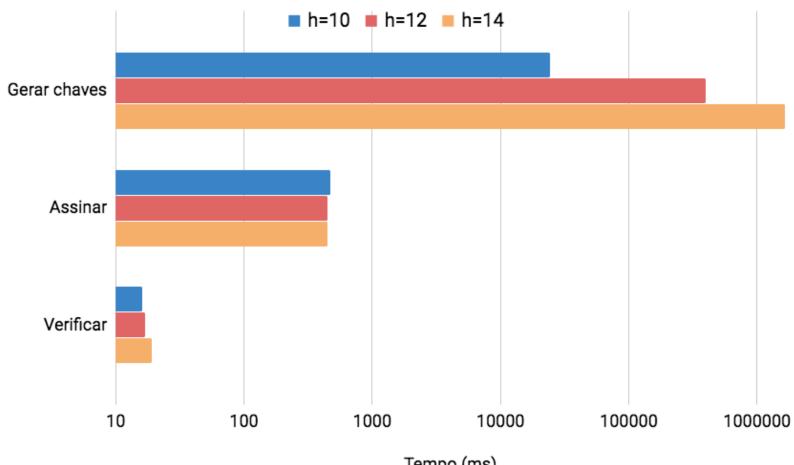


Evaluation – Experiments

- Arduino Due
 - ARM 32-bit 84 MHz
 - 96kB SRAM
 - 256kB Flash memory



Evaluation – Winternitz (w = 2)


Tempo (ms)

Evaluation – Winternitz (w = 4)

Tempo (ms)

Evaluation -MSS (w = 4, n = 256)

Tempo (ms)

Agenda

- Introduction
- Background
- Implementation
- Evaluation
- Conclusion

Conclusion

- HBS are <u>practical</u> in resource-constrained IoT devices
 - Other schemes should have a better performance (XMSS, Winternitz+)
- HBS should be considered as an alternative in the post-quantum scenario for IoT devices

Thanks

jessicacarneiro@dcc.ufmg.br

